skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nyamai, Miriam M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT V745 Sco is a Galactic symbiotic recurrent nova with nova eruptions in 1937, 1989, and 2014. We study the behaviour of V745 Sco at radio wavelengths (0.6–37 GHz), covering both its 1989 and 2014 eruptions and informed by optical, X-ray, and $$\gamma$$-ray data. The radio light curves are synchrotron-dominated. Surprisingly, compared to expectations for synchrotron emission from explosive transients such as radio supernovae, the light curves spanning 0.6–37 GHz all peak around the same time ($$\sim$$18–26 d after eruption) and with similar flux densities (5–9 mJy). We model the synchrotron light curves as interaction of the nova ejecta with the red giant wind, but find that simple spherically symmetric models with wind-like circumstellar material (CSM) cannot explain the radio light curve. Instead, we conclude that the shock suddenly breaks out of a dense CSM absorbing screen around 20 d after eruption, and then expands into a relatively low-density wind ($$\dot{M}_{out} \approx 10^{-9}\!-\!10^{-8}$$ M$$_{\odot }$$ yr$$^{-1}$$ for $$v_w = 10$$ km s$$^{-1}$$) out to $$\sim$$1 yr post-eruption. The dense, close-in CSM may be an equatorial density enhancement or a more spherical red giant wind with $$\dot{M}_{in} \approx [5\!-\!10] \times 10^{-7}$$ M$$_{\odot }$$ yr$$^{-1}$$, truncated beyond several $$\times 10^{14}$$ cm. The outer lower-density CSM would not be visible in typical radio observations of Type Ia supernovae: V745 Sco cannot be ruled out as a Type Ia progenitor based on CSM constraints alone. Complementary constraints from the free–free radio optical depth and the synchrotron luminosity imply the shock is efficient at accelerating relativistic electrons and amplifying magnetic fields, with $$\epsilon _e$$ and $$\epsilon _B \approx 0.01\!-\!0.1$$. 
    more » « less
  2. ABSTRACT We present radio observations of the symbiotic recurrent nova V3890 Sagitarii following the 2019 August eruption obtained with the MeerKAT radio telescope at 1.28 GHz and Karl G. Janksy Very Large Array (VLA) at 1.26−35 GHz. The radio light curves span from day 1 to 540 days after eruption and are dominated by synchrotron emission produced by the expanding nova ejecta interacting with the dense wind from an evolved companion in the binary system. The radio emission is detected early on (day 6) and increases rapidly to a peak on day 15. The radio luminosity increases due to a decrease in the opacity of the circumstellar material in front of the shocked material and fades as the density of the surrounding medium decreases and the velocity of the shock decelerates. Modelling the light curve provides an estimated mass-loss rate of $${\overset{\hbox{$$\bullet $$}}{M}}_{\textrm {wind}} \approx 10^{-8}\, {\textrm {M}}_\odot ~{\textrm {yr}}^{-1}$$ from the red giant star and ejecta mass in the range of Mej = 10−5––10−6 M⊙ from the surface of the white dwarf. V3890 Sgr likely hosts a massive white dwarf similar to other symbiotic recurrent novae, thus considered a candidate for supernovae type Ia (SNe Ia) progenitor. However, its radio flux densities compared to upper limits for SNe Ia have ruled it out as a progenitor for SN 2011fe like supernovae. 
    more » « less
  3. Abstract We present radio observations (1–40 GHz) for 36 classical novae, representing data from over five decades compiled from the literature, telescope archives, and our own programs. Our targets display a striking diversity in their optical parameters (e.g., spanning optical fading timescales, t 2 = 1–263 days), and we find a similar diversity in the radio light curves. Using a brightness temperature analysis, we find that radio emission from novae is a mixture of thermal and synchrotron emission, with nonthermal emission observed at earlier times. We identify high brightness temperature emission ( T B > 5 × 10 4 K) as an indication of synchrotron emission in at least nine (25%) of the novae. We find a class of synchrotron-dominated novae with mildly evolved companions, exemplified by V5589 Sgr and V392 Per, that appear to be a bridge between classical novae with dwarf companions and symbiotic binaries with giant companions. Four of the novae in our sample have two distinct radio maxima (the first dominated by synchrotron and the later by thermal emission), and in four cases the early synchrotron peak is temporally coincident with a dramatic dip in the optical light curve, hinting at a common site for particle acceleration and dust formation. We publish the light curves in a machine-readable table and encourage the use of these data by the broader community in multiwavelength studies and modeling efforts. 
    more » « less